

iCT1

Fully automatic Current and Voltage Transformer test set

Key features

iCT1

- Designed to test Current, Voltage and Combined Transformers
- Time saving testing: only 1 set up connection to perform all tests
- Main tests performed: Ratio & Phase Error, Excitation, Resistance, Accuracy, Burden
- 5-TAP integrated switchbox describing the behavior of the CT
- Able to test CT with saturation voltage up to 2kV and till 30kV applying DC indirect method
- Integrated Demagnetizer
- CT Explorer function: able to find the nameplate data of the CT
- Compact and lightweight
- Patented technology

CT / VT Test Set

Description

iCT1 is a fully automatic Current and Voltage Transformer test set, especially designed for testing CTs, VTs and Combined Transformers.

iCT1 grants a faster testing, thanks to its 5-TAP switchbox which allows to connect directly up to 5 taps, in this way the connection of the device is made only one time and without the need of any further manual operation.

The main tests performed by iCT1 are: Excitation, Accuracy, Ratio & Phase Error, Resistance and Burden and they are all executed in fully automatic mode, without user intervention. All tests are performed by generating current and voltage.

All the functionalities are managed by a 7" color LCD touch screen interface, designed for the outdoor environment.

Test results are kept in a local memory or in a USB pen drive, and can be transferred to a PC along with settings, using ethernet (plug or wireless) connection.

Application

Factory

- · iCT1 performs tests according to the international standards
- High accuracy CT's up to class 0.1
- · Time saving testing, that allows a faster stage production

Commissioning

- · Only one device for testing Current and Voltage Transformers and Combined Transformers
- · Able to test Current Transformers with a very high saturation voltage, up to 30 kV
- · Easy to carry

A combined solution for Current, Voltage and Combined Transformer testing

Voltage Current Transformer Transformer

Combined Transformer

4

Current Transformer Tests

Turn Ratio a	and Polarity	Voltage Mode
--------------	--------------	--------------

Burden	Secondary	Side
--------	-----------	------

Excitation curve

Excitation curve DC method

Winding / Burden resistance

ALF / ISF

Leakage current AC

Accuracy test

CT Explorer

Demagnetizer

Voltage Transformer Tests

Ratio
Ratio electronics
Burden
No load current

Tests are performed in accordance with the following standards:

IEC EN 60044-1 IEC EN 60044-2 IEC EN 60044-5 IEC EN 60044-7 IEC EN 61869-x ANSI / IEEE C57.13.1

Turn Ratio and Polarity Voltage Mode

The ratio measurement is performed applying High Voltage AC to the CT secondary side, and measuring the CT primary voltage.

Burden Secondary Side

The burden measurement is performed applying low AC current to the CT burden, and measuring the voltage drop.

• Excitation Curve (Knee Point)

The excitation curve is tested in two different methods:

• Standard Method: it is connected the high AC voltage output to the CT secondary side, slewing the voltage and measuring at the same time the output voltage and current.

• DC Method: it is connected the low DC voltage generator to the CT secondary side, varying the voltage and measuring at the same time the output voltage and current.

The DC voltage allows to saturate the CT core, then the Knee voltage is calclulated at the nominal frequency.

Winding Resistance

The resistance is measured connecting the low DC current source to the winding or burden, and measuring the test current and the voltage drop.

• ALF / ISF

Purpose of the test is to calculate the ALF/ISF value using the Winding Resistance test results and the Burden Secondary Side test results. ALF = Accuracy Limit Factor and ISF = Instrument Security Factor.

Leakage Current

The test is performed connecting the high AC voltage source between the CT primary and secondary windings, and maesuring the leakage current.

Accuracy

The Accuracy test verifies automatically the CT characteristics (ratio error and phase error) according to the standards, typically at 120%, 100%, 20%, 5% and 1% of rated current.

Demagnetizer

Purpose of this procedure is to apply a DC current with alternate polarity to the winding, in order to remove from the core the residual magnetism due to a previous winding resistance measurement.

Sometimes the nameplate is not easy to be read or can be missing. Which nominal parameters have to be used in the test? iCT1 implements the CT Explorer functionality: from test results, thanks to the evaluation of the data, it is able to detect the most important nameplate data of the CT.

CT / VT Test Set

Ratio

The ratio measurement is performed by applying high voltage to the VT primary, and measuring the VT secondary voltage.

Ratio Electronics

The ratio measurement is performed applying high voltage to the VT primary side, and measuring the low-level VT secondary voltage.

• Burden

The burden measurement is performed applying low AC voltage to the VT burden, and measuring the corresponding current.

· Leakage Current

The test is performed connecting the high AC voltage source between the VT primary and secondary windings, and measuring the leakage current.

Test Plan Editor

The Test Plan Editor is an innovative and advanced software module, allowing the operator to define a sequence of tests. The operator defines the desired sequence of tests and sets the parameters of each test: the Editor creates a sequence of tests to be performed automatically. The feature is available for the tests of both Current and Voltage transformers.

DC Method Test

Some transformers may have high saturation voltage above 2kV, in some cases they can arrive till to 30kV.

For these reasons iCT1 implements a low voltage method known as DC method test.

This method allows iCT1 to be:

- Safe for the user (only 150 V dc)
- Lighter
- Faster

This provided solution builds a model that can determinate the behavior of the transformer at different frequencies and with different burdens.

Standard Connection Cables

• 1 main supply cable, 2 m long

• 1 grounding cable, 6 m long, 6 mm2, terminated on one side with a terminator, and on the other side with an earth connection clamp (2 cables for the optionally)

- 1 ETHERNET interface cable
- 1 USB pen drive
- 2 clamps for CT primary side connection. Clamp opening:
- 60 mm on the rear, 80 mm on the front

• 2 clamps for CT secondary side connection, with two sockets: one to connect the current or voltage, the other one to connect the measurement. Clamp opening: 60 mm on the rear, 80 mm on the front

• 6 alligator clips for measurements connections on secondary side (2 red, 3 black)

• 1 set of adaptors (tot. 10) from banana sockets to terminators, in different colors

• 2 connection cables for primary side measurements, 13m long (18 m long optionally)

• 6 connection cables for secondary side measurements, 6m long (10 m long optionally)

• 2 voltage connection cables, 6 m long (10 m long optionally) for generation on secondary side

Other Characteristics

Memory

- Up to 64 test plans
- More than 1,000 test results

Interfaces

• ETHERNET or WI-FI for the PC connection. The Ethernet port

can be used also for remote service and maintenance

 USB port for the USB key: this serves to download test settings and results

Main supply

100÷230 V ± 15%; 48÷62 Hz Power consumption: Less than 1 kW in normal use

Dimensions and weight

410 (H)x340 (W)x205 (D) mm; 16 kg

Accessories

- User manual
- 5 spare fuses, type T8A
- Connection cables, provided in a case with handle

6

Technical Specification

Output Characteristics

iCT1

Main generator

- The main generator has 5 outputs:
- High AC voltage
- Low AC current
- Low DC current
- Low AC voltage
- Low voltage for DC method test

High AC voltage

- MAX Voltage 2000 V
- MAX Current 1 A

Low AC current

- Imax 6A AC
- Vmax 100V AC
- Max Power 200VA

Low DC current

- Imax 6A DC
- Vmax 30V DC
- Max Power 180W

Low AC voltage

- Maximum output voltage: 180V AC
- Maximum output current: 3.5A AC
- Maximum output power:
 - Supply 230V : 400 VA (Power values with $\cos\!\varphi$ < 0.225)
 - Supply 110V : 350VA (Power values with $\cos\!\phi\!\!<$ 0.175)

Low voltage for excitation curve DC method

- Maximum output voltage: 200V DC
- Maximum output current: 2Arms, 15A peak

Output frequency

- Frequency: 15Hz 400Hz
- Frequency resolution: 10mHz
- Frequency accuracy: < 100 ppM; output voltage > 200 V

Other features of main outputs

- Zero crossing control: the generation starts and stops on the zero crossing
- Over-current: alarm message
- Thermal protection for: Power supply, Power amplifier,
- Power transformer. The operator is alerted by a message.

Input	Range	Resolution	Typical Error [<%rdg] [<%rg]	Guarante [±%rdg]	ed Error [±%rg]
10	10 A	1 mA	< 0,025 % < 0,025 %	% ± 0,05%	±0,1%
AC current	1 A	0,1 mA	< 0,025 % < 0,025 %	% ± 0,10 %	±0,05 %
	0,1 A	0,01 mA	< 0,025 % < 0,025 %	% ± 0,15 %	± 0,05 %
	15 A	1 mA			
DC current	1,5 A	0,1 mA	< 0,025 % < 0,025	% ± 0,05 %	±0,05 %
	0,15 A	0,01 mA			
300	300 V	15 mV			
AC voltage	30 V	1,5 mV	< 0.02 % < 0.02		
primary side	3 V	0,15 mV	< 0,02 % < 0,02	% ± 0,05 %	± 0,05 %
300	300 mV	0,015 mV			
	2100 V	100 mV			
AC voltage	200 V	10 mV	< 0,02 % < 0,02	% ± 0,05 %	± 0,05 %
secondary side	20 V	1 mV			
	2 V	100 µV			
DC voltage 200 V 20 V 2 V	200 V	10 mV	< 0,025 % < 0,025 9	% < 0,05 %	< 0,05 %
		1 mV	< 0,025 % < 0,025 %	% < 0,05 %	< 0,05 %
	2 V	100 µV	< 0,025 % < 0,025 %	% < 0,05 %	< 0,05 %
	200 mV	10 µV	< 0,025 % < 0,025 %	% < 0,05 %	< 0,05 %
	20 mV	1 µV	< 0,05 % < 0,05 %	ó < 0,01 %	< 0,01 %

Input / Outputs Measurements

Type of measurement

True RMS for AC outputs DC component for DC outputs

Metering temperature coefficient

 \pm 0,05 % / °C of the value \pm 0,02 % / °C of the range

Ratio test

Accuracy for CT ratio measurements:

Ratio range	Typical accuracy	Guaranteed accuracy
0,8÷2000	±0,02 %	±0,05 %
2000 ÷ 5000	± 0,03 %	±0,10 %
5000 ÷ 20000	± 0,05 %	± 0,20 %

Accuracy for VT ratio measurement

Ratio range	Typical accuracy	Guaranteed accuracy
1÷400	± 0,03 %	± 0,2 %
400÷1000	± 0,05 %	± 0,3 %
1000 ÷ 2500	± 0,05 %	± 0,5 %

Main Menu Display

Winding resistance test

Source	Resolution	Typical accuracy	Guaranteed accuracy
Low DC current 6 A max	0,1 mΩ	< 0,05 %	0,1 % 1 mΩ

Phase Angle

Metering range	Resolution	Accuracy (cosφ 0.8 - 1)
0°÷360.0°	0.01° (< 1 minute)	< 4 minutes (maximum) For amplitudes more than 10% of the metering range

Ordering information

CODE	MODULE
10183	iCT1 Advance test set with software license
16183	Standard cables test kit 6m + 13m
18183	Long cables test kit 10m + 18m for EHV CT
19183	Laboratory cables kit 2m + 3m
15183	Transport case

Office: ISA - Altanova Group Srl

Via Prati Bassi 22, 21020 Taino (Va) - ITALY Phone +39 0331 95 60 81 Email isa@doble.com

www.doble.com

The product and the information contained herein may be changed at any time without prior notification. This document nor any parts thereof may not be reproduced or transmitted in any form either electronically or mechanically, including photocopying and recording, without the express written consent of ISA - Altanova Group Srl.